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Abstract 
It is well known that the problem of classifying the 
symmetry of simple lattices leads to consideration of 
the conjugacy properties of the holohedral crystal- 
lographic point groups ('holohedries'). Classical results 
for the three-dimensional case then state that: (i) the 
orthogonal classification of the holohedries subdivides 
the simple lattices into the familiar seven crystal systems 
(this gives the 'geometric symmetry'  of simple lattices); 
(ii) the stricter arithmetic classification of the holohe- 
dries subdivides the three-dimensional simple lattices 
into the well known fourteen Bravais lattice types (this 
gives the 'arithmetic symmetry'  of simple lattices, which 
is more refined than the geometric one). There exists an 
analogous problem of studying the symmetry of the 
more complex periodic structures in three dimensions 
('multilattices', that is, finite unions of translates of a 
given simple lattice), which describe in more detail the 
atomic lattices of the crystalline materials found in 
nature. In this case, the groups of affine isometries that 
leave a multilattice invariant, called the 'space groups', 
must be considered. Well known results subdivide 
the space groups into 219 affine conjugacy (or iso- 
morphism) classes. This corresponds to classifying the 
'geometric symmetry'  of tridimensional multilattices. In 
crystallography, there does not exist a classical counter- 
part for multilattices of the above-mentioned arithmetic 
symmetry of simple lattices. In this paper, a natural 
framework is proposed in which to study the 'arithmetic 
symmetry of multilattices' and it is shown that the latter 
gives a finer classification than that based on the 219 
classes of space groups, even if site symmetry is taken 
into account. This approach originates from the 
investigation of the changes of symmetry in deformable 
crystalline solids and proves useful for the modelling of 
phase transitions in crystals and related phenomena. 

1. Introduction 
1.1. The symmetry of  simple lattices 

A basic problem in crystallography is to describe 
and classify the symmetry of three-dimensional simple 
lattices. This question leads in a natural way to consider 
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the conjugacy classes, in the orthogonal group 0(3), of 
the 'crystallographic point groups', that is, of the finite 
subgroups of O(3) leaving some simple lattice invariant. 

Among the crystallographic point groups, the rele- 
vant ones for the description of the symmetry of simple 
lattices are the maximal subgroups of O(3) leaving 
some simple lattice invariant, called the 'holohedries'. 
A classical result for the three-dimensional case states 
that there are seven orthogonal conjugacy classes of 
holohedries, called the crystal systems. Accordingly, the 
simple lattices are subdivided into seven crystal systems 
through the criterion that their holohedries be orthog- 
onally conjugate. This point of view describes the 
'geometric symmetry'  of simple lattices. 

As is well known, there is also a more refined (and 
equally natural) arithmetic classification of the holohe- 
dries, which leads to a description of the 'arithmetic 
symmetry'  of simple lattices. The arithmetic criterion is 
based on the conjugacy properties of the symmetry 
groups within the group GL(3, Z) of invertible 3 x 3 
integral I matrices, rather than in 0(3). Thus, from the 
arithmetic point of view, two lattices are of the same 
type based on the fact that their symmetry groups be 
conjugate through an invertible integral matrix, that is, a 
matrix in GL(3, Z) rather than one in 0(3). 

It is a classical result that the arithmetic criterion is 
more stringent than the geometric one, giving rise to the 
fourteen familiar 'Bravais lattice types' within the seven 
crystal systems; 2 see for instance Bravais (1850), Miller 
(1972), Schwarzenberger (1972), Engel (1986), Stern- 
berg (1994), Michel (1995) and Pitteri & Zanzotto 
(1996, 1998a). 

In this context, it is natural to regard the space 13 
of all the lattice bases, or the space C+(Q3) of all the 
lattice metrics 3 as the natural configuration spaces of 

1 As usual, here we denote by Z and I~ the sets of integral and real 
numbers, respectively. 
EWe recall that the different Bravais types within a given system 
correspond to possible different 'centerings' that exist for the 
primitive lattices in that system. 
3Here /3 denotes the nine-dimensional space of all the triples of 
independent vectors of ~3, and C+(Q3) denotes the six-dimensional 
space (a convex cone) of all the 3 x 3 positive-definite symmetric real 
matrices. 

Acta Crystallographica Section A 
ISSN 0108-7673 © 1998 



360 T H E  A R I T H M E T I C  S Y M M E T R Y  O F  D E F O R M A B L E  M U L T I L A T T I C E S  

(deformable)  simple lattices - see ~2.2-2.3.  Then one 
can see that GL(3,  Z) can be considered as the 'global 
symmetry  group'  of simple lattices, which encompasses 
all the crystallographic point groups, and induces a 
natural  action on /3 or C+(Q3). In this context, the 
notion of ari thmetic symmetry  for simple lattices 
emerges readily by considering the action of the finite 
subgroups of GL(3,  Z) on the configuration spaces, and 
the lattice configurations that are invariant under  such 
action. This makes  ari thmetic symmetry  the natural  
instrument for describing and keeping track of the 
symmetry  changes in simple lattices when their bases 
are deformed in the space B. For this reason, the 
arithmetic symmetry  proves to be very useful for the 
investigation of phase transitions in crystals and related 
phenomena .  4 For reviews of several aspects of the 
research in this field, see for instance Ericksen (1977, 
1979, 1980, 1989, 1996), Ball & James (1987, 1992, 
1998), Luskin (1996) and Pitteri & Zanzot to  (1998a). 

1.2. The symmetry o f  multilattices 

In crystal lography and physics, there is also the need 
to investigate the symmetry  of (tridimensional) multi- 
lattices, i.e. of the finite unions of translates of a given 
simple lattice. These complex periodic structures 
describe in more  detail the atomic lattices of the crys- 
talline materials found in nature.  5 In the case of 
multilattices, one is first led to consider the groups of 
affine isometries that leave some multilattice invariant 
( 'space groups') .  Classical results subdivide such groups 
into 219 affine conjugacy classes (or, equivalently, 
isomorphism classes). 6 This corresponds to classifying 
the 'geometric  symmetry '  of multilattices. 

There does not seem to exist in crystal lography a 
counterpar t  for multilattices of the classical ari thmetic 
symmetry  of simple lattices ment ioned in §1.1. Our  aim 
here is to propose a f ramework  for the investigation of 
the arithmetic symmetry o f  (deformable) multilattices. 
Analogously  to the case of simple lattices, this gives a 
very useful tool for an accurate description of the 
symmetry  changes and phase transitions in deformable  
complex crystals, as well as giving a classification of 
their symmetry  which is finer than the one based on the 
219 (or 230) classes of space groups (even if site- 
symmetry  groups are taken into account).  

4That the Bravais types, and not only the crystal systems, are very 
significant in the phase changes of crystalline substances occurring in 
nature is a well known fact: for instance, one of the most important 
phase transformations in metallurgy, the so-called 0t- F transformation 
in iron, is a transition of Bravais lattice type (from a body-centered 
cubic to a face-centered cubic structure) and not a transition of crystal 
system. 
5For instance, the well known 'hexagonal close-packed' structure 
gives a very simple example of a multilattice that is not a simple 
lattice; also, typically, the metallic alloys have multilattice structures, 
as do various elements. 
6 There are 230 classes if conjugacy is sought through an orientation- 
preserving affine operation (i.e. with positive determinant). 

Our  approach closely follows the established treat- 
ment  of ari thmetic symmetry  for simple lattices, which 
we briefly recalled in §1.1: 

(a) First we indicate the natural  'configuration 
spaces'  for multilattices. 

(b) Secondly, we determine the 'global symmetry  
groups'  of multilattices; these are suitable groups of 
integral matrices which generalize the global symmetry  
group GL(3, Z) of simple lattices [see Pitteri (1985, 
1996); see also the earlier works by Ericksen (1970) and 
Parry (1978) for the simplest special cases]. We then 
briefly describe the action of the global symmetry  
groups on the configuration spaces. 

(c) Thirdly, the arithmetic symmetry  of multilattices 
is described by means of the action of suitable finite 
subgroups of the global symmetry  groups. As for simple 
lattices, the arithmetic symmetry  proves to be a natural  
method for describing how a multilattice changes its 
symmetry while undergoing a (homogeneous)  defor- 
mation. 

We will see through an example that, in analogy to 
the case of simple lattices, also for multilattices the 
arithmetic symmetry is finer than the geometric (space- 
group) symmetry. The same example shows that the 
arithmetic symmetry  is finer than the symmetry  
described when the 's i te-symmetry groups '  are also 
taken into account (a si te-symmetry group is a 
subgroup of the space group whose operat ions stabilize 
a point of the multilattice). 

The approach we propose originates from and proves 
useful in the investigation of solid-state phase transi- 
tions in crystalline materials  (see for instance James, 
1987; Bhat tacharya  et al., 1993) and seems worth further  
study. We refer to Pitteri (1996) and Pitteri & Zanzot to  
(1998a,b) for further  details on this and related subjects. 

2. 'Geometric' and 'arithmetic' symmetries 
of simple lattices 

This section gives some preliminary definitions and 
notions on the symmetry of simple lattices, a more 
comprehensive introduction to which can be found, for 
instance, in Engel (1986), Michel (1995), Pitteri & 
Zanzot to  (1998a). 

2.1. The geometric symmetry o f  simple lattices and the 
seven crystal systems 

Let E(e~) be a three-dimensional  simple lattice, 
defined by 

/2(%) = {x E ]I~ 3 :X : M"e. ,  a = 1, 2, 3, M" E Z}, (1) 

where 7 the three linearly independent  vectors e a, 
a = 1, 2, 3, in the three-dimensional  real Euclidean 

7 Here and in what follows, the summation convention over repeated 
indices will be understood. 
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space ~3, are called the lattice basis; the positive-defi- 
nite symmetric 8 matrix 

g = g '  > 0 ,  with g=(gab) ,  gab=ea ' e t , ,  (2) 

is the lattice metric. 
Given e~, it is classical to consider the holohedry 

P(e a) C O(3), which is the group of orthogonal opera- 
tions leaving the lattice £(ea) invariant: 

P(ea) = {Q ~ O(3) : QE(ea) = £(e,,)}. (3) 

As is well known, the holohedral subgroups of O(3) are 
all finite groups, they all contain the central inversion, 
and all their elements have period 1, 2, 3, 4 or 6 
('crystallographic restriction'). 

Since by applying an orthogonal transformation to a 
simple lattice the holohedry changes by conjugacy in 
o(3): 

P(Qea)--QP(ea)Q t for Q ~ O(3), (4) 

the natural classification criterion for the holohedries is 
orthogonal conjugacy, which leads to the following 
classical result: 

Theorem 1. There are 32 conjugacy classes of crystal- 
lographic point groups 9 in 0(3) (called crystal classes). 
Of these, the classes of holohedries, called the crystal 
systems, are seven. 

As is well known, the crystal systems are denomi- 
nated triclinic, monoclinic, orthorhombic, rhombohe- 
dral (or trigonal), tetragonal, hexagonal, and cubic. 

The result above allows one to classify also the 
simple lattices [and, indeed, also the bases in/3 and the 
metrics in C+(Q3)] into crystal systems, each of which 
collects all the simple lattices whose holohedries are 
orthogonally equivalent. 

2.2. The global symmetry o f  simple lattices 

The results recalled in the preceding subsection 
answer the following classical question of crystal- 
lography: 

(a) To find all the orthogonal transformations Q of 
the vector space ]I~ 3 mapping a simple lattice E(ea) onto 
i t s e l f :  Q / ~ ( e a )  = / ~ ( e a ) .  

By (1) and the linearity of Q, this clearly amounts to 
finding all the transformations Q such that 

Z;(Qea) = Z;(e~), (5) 

that is, such that the orthogonally transformed vectors 
Qe a are again a basis for E(e~). This is a special case of 
the following more general question: 

8 Here  the symbol t indicates the transpose of a matrix or tensor, while 
> 0 means positive-definiteness. 
9 By definition, a 'crystallographic point group'  P is a subgroup of 
0(3)  whose elements leave some simple lattice invariant. If  P has this 
property, it is a holohedry if and only if it is the maximal group leaving 
a simple lattice invariant, that is, P = P(ea) for some ea, as in (3). 

(b) To find all the linearly transformed vectors He,, 
with H an invertible linear transformation, that 
generate E(ea). 

Problem (b) is connected to the observation that a 
simple lattice E does not uniquely determine its basis or 
its unit cell; the indeterminacy in the choice of the 
lattice basis is described precisely by the following 
Proposition (see Ericksen, 1979; Pitteri & Zanzotto, 
1998a): 

Proposition 1. A simple lattice E(%) determines its 
basis up to transformations in GL(3, Z): 

E(mbaeh) = E(ea) ¢~, m ~ GL(3, Z). (6) 

As recalled in the Introduction, GL(3, Z) denotes the 
infinite discrete group of invertible 3 × 3 matrices with 
integral entries (necessarily their determinant is uni- 
modular). 

Proposition 1 states that the vectors e' a form a new 
basis for the lattice E(ea) if and only if 

, b with m ~ GL(3, Z). ~ ( e ' a )  : /~(ea) ¢¢~ e a = mae b, 

(7) 

Thus the invariance of all simple lattices is abstractly 
the same, being given by the 'global symmetry group' 
GL(3, Z). 

We notice that under a transformation of lattice basis 
as in (7)2 the lattice metric transforms, in obvious 
notation, as 

g' = mt gm, m ~ GL(3, Z). (8) 

Formulas (7)2 and (8) give natural actions of GL(3, Z) 
on the spaces /3 a n d  C+(Q3). These spaces can be 
considered as natural 'configuration spaces' for 
deformable simple lattices. The actions (7)2 or (8) of 
GL(3, Z), and of its finite subgroups, on/3 and C+(Q3) 
give a classical and very natural way of studying the 
(changes of) symmetry in simple lattices that undergo 
deformations, as is described hereafter. 

2.3. The arithmetic symmetry o f  simple lattices and the 14 
Bravais lattice types 

In view of (3) and (6), the holohedry P(ea) of a lattice 
E(ea) can be equivalently defined as 

P(ea) = {Q E O(3) • Qe a = maeb , b  m E GL(3, 7/,)}. (9) 

Then the considerations in §2.2 regarding the 'global 
symmetry' of simple lattices are tied to the discussion in 
§2.1 by considering the lattice groups 1° of simple lattices. 

10 Also the terms integral or arithmetic holohedries are used in the 
literature for our lattice groups. In fact, the name 'lattice group'  is 
used by some authors [for instance Yale (1968) and Miller (1972)] to 
indicate the simple lattices themselves, regarded as groups of 
translations of the affine space A 3. Following Ericksen (1979), we 
use the term 'lattice group'  because, as we will see from Theorems 2 
and 3 below, these groups of integral matrices determine the Bravais 
lattice types within each system. 
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By definition, the lattice group L(ea) of a basis e a is the 
finite group of integral matrices appearing in (9): 

L(ea) = {m E GL(3, Z) " mabeb = Qea, Q ~ 0(3)} 

C GL(3, X). (10) 

Since they are the integral representations of the 
holohedries of 0(3)  in their own lattice bases, by defi- 
nition the lattice groups are the maximal finite 
subgroups of GL(3, Z) acting orthogonally on a simple 
lattice. Some main properties of these groups are 
investigated for instance by Janssen (1973), Ericksen 
(1979), Engel (1986), Opechowski (1986), Michel 
(1995), Pitteri & Zanzotto (1998a). 

A change of lattice basis changes the lattice group to 
a conjugate in GL(3, Z): 

L(mbeb)  =m-lL(ea)m if m E GL(3, Z), (11) 

while an orthogonal transformation does not change the 
lattice group: 

L(Qe~) = L(ea) if Q e 0(3). (12) 

Owing to (12), L(ea) can be equivalently defined as the 
stabilizer of the lattice metric g in (2), that is, as the 
maximal subgroup of GL(3, Z) whose elements leave g 
invariant under the action (8): 

L(g) -- {m E GL(3, Z) : mt gm -- g} = L(ea). (13) 

Because of its definition, L(e~) shares with P(ea) a 
number of properties; thus, a subgroup of GL(3, Z) is (a 
subgroup of) a lattice group if and only if it is finite; all 
lattice groups contain the inversion - 1  ~ GL(3, Z); all 
the matrices in a lattice group satisfy the crystal- 
lographic restriction. 

The transformation law (11) for lattice groups and 
Proposition 1 say that a lattice /~(e~) determines an 
entire conjugacy class in GL(3, Z) of lattice groups, also 
called an arithmetic Bravais class 11 (see Engel, 1986). 
Then the natural question is how many such Bravais 
classes exist. It is well known that conjugacy in 
GL(3, Z) is a more stringent requirement than conju- 
gacy in 0(3). This means that the number of Bravais 
classes is greater than the number of crystal systems 
(seven). Indeed, a classical result in mathematical 
crystallography states that (compare with Theorem 1): 

Theorem 2. There are 73 arithmetic classes (conjugacy 
classes of finite subgroups) in GL(3, Z), among which 
there are 14 arithmetic Bravais classes (conjugacy 
classes of lattice groups). 

See for instance Niggli & Nowacki (1935), Burck- 
hardt (1947), Sternberg (1994), Michel (1995). 

11 In general, the GL(3, Z)-conjugacy class of any finite subgroup of 
GL(3, Z) is called an arithmetic class, and the groups in it are called 
arithmetically equivalent. 

By means of the Bravais classes in GL(3, Z) and of 
Theorem 2, we obtain an arithmetic criterion giving a 
further classification of simple lattices, of their bases 
and their metrics; this classification is finer than the 
geometric one based on the crystal systems discussed in 
§2.2. Explicitly, since, as mentioned above, to any lattice 
/~(ea) corresponds by (11) a Bravais class of equivalent 
lattice groups, one considers as arithmetically equiva- 
lent all the bases and lattices corresponding to the same 
Bravais class. Thus, two bases e a and e' a in /3 (and the 
lattices they generate) are arithmetically equivalent if 
their lattice groups are such that: 

L(e'a) = m-lL(e~)m for some m E GL(3, Z). (14) 

Bases or lattices for which (14) holds are said to have 
the same Bravais lattice type and likewise for the 
metrics; we thus have the following classical corollary of 
Theorem 2: 

Theorem 3. There are 14 distinct Bravais lattice types in 
three dimensions. 

The construction of the 14 Bravais lattice types, 
which are subdivided among the seven crystal systems 
in the known way, can be found for instance in Bravais 
(1850), Seitz (1935), Miller (1972), Sternberg (1994). 12 

As is also well known, the geometric meaning of 
Theorem 3 is connected to the possible existence of 
distinct 'centerings' for the 'primitive' lattices within 
each crystal system; as a consequence, the Bravais 
classes and Bravais types have classical denominations 
such as 'body-centered cubic' (b.c.c.), 'face-centered 
cubic' (f.c.c.), 'body-centered tetragonal' etc. 13 

2.4. Fixed sets in the configuration spaces of  simple 
lattices 

The first step in the analysis of the changes of lattice 
symmetry that may be caused by the deformation of a 
lattice basis is establishing for which class of deforma- 
tions the 'symmetry of a lattice remains the same'. By 
the definitions in §2.3, this leads to studying the struc- 
ture of the sets of bases [or, equivalently, of metrics - 

12 Sometimes the classification of simple lattices in Bravais types is 
based on definitions that are different from (14). For instance, lattices 
can be equivalently partitioned in types based on the affine 
equivalence of their affine symmetry groups (see also footnote 24). 
Pitteri & Zanzotto (1996) show that the criterion originally used by 
Bravais (1850) and Cauchy for classifying simple lattices is not 
equivalent to the one based on condition (14) and actually leads to 
distinguishing only 11 types of lattices. 
13 We already mentioned that the 'arithmetic symmetry'  described by 
the lattice groups has great physical relevance. For instance, the phase 
transformation in iron mentioned in footnote 4 changes the crystalline 
structure from b.c.c, to f.c.c: in this case, the crystal system of both 
phases is cubic, so that the symmetry change cannot be described in 
terms of the holohedries, which are (orthogonally) equivalent; it can 
only be captured by the change in the phases' inequivalent lattice 
groups. Further classifications of simple lattices that are finer than the 
arithmetic one are discussed in detail by Gruber  (1997). 
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see (13)] sharing the same lattice group. These subsets 
of the spaces /3 or C+(Q3) are very important  in the 
study of phase transit ions in crystals and in this section 
we briefly ment ion  some of their  main properties. 

Any  subgroup L C GL(3, Z) determines  a connected 
set I(L) in the space C+(Q3), called its fixed set, 
consisting of all the metrics stabilized by the elements 
of L (see Ericksen, 1979; Michel, 1995; Pitteri & 
Zanzotto,  1998a): 

I(L) : {g ~ C + ( Q 3 )  : mtgm : g for all m E L}; 

(15) 

in the space Q~ of all symmetric 3 x 3 real matrices, 
formula (15) defines a suitable vector subspace that  
depends on the group L; in the space C+(QO of posi- 
tive-definite matrices formula (15) only defines a l inear 
convex cone. In the same way, L determines  an 0(3)-  
invariant  set in the space B of lattice bases, again called 
the fixed set of L, consisting of all the bases on which 
the elements  of L act orthogonally:  

E(L) = {% e B : (%. eb) ~ I(L)}. (16) 

The basic observat ion here is that  the metrics or bases 
admitt ing a given lattice group, which belong to the 
same fixed set, all correspond by definition to lattices of 
the same Bravais symmetry type, while the metrics or 
bases of lattices of different type never  belong to the 
same fixed set. Thus by analyzing the ar rangement  of 
the fixed sets we can see how a lattice changes its 
symmetry when undergoing a (homogeneous)  defor- 
mation,  that is, when a 'path '  is given in the config- 
urat ion space B [or in C+(Q3)] .14 

We briefly recall here some of the main propert ies  of 
the fixed sets of any subgroup of GL(3, Z) (see 
Ericksen, 1979; Michel, 1995); these give useful infor- 
mat ion regarding the symmetry changes that  are 
possible for deformable  simple lattices. See also Pitteri 
& Zanzot to  (1998a) for more details. 

Proposition 2. 
(i) The fixed set of a subgroup of GL(3, Z) is non- 

empty if and only if the subgroup is included in a lattice 
group. 

(ii) The fixed set of any finite subgroup of GL(3, Z) is 
a l inear subspace of the space Q3 of all symmetric 3 x 3 

14 It is useful to consider the six independent entries gab, a <_ b, of a 
typical lattice metric g e C+(Q3) to be coordinates in the space of all 
symmetric 3 x 3 matrices and, by definition (15), describe the fixed 
sets of lattice groups by means of linear equations in the variables gab- 
For example, the fixed set of a primitive cubic basis given by three 
mutually orthogonal unit vectors is constituted by all the positive- 
definite diagonal matrices diag(g u , gu, gu), gn > 0, as is geometrically 
intuitive. In this case, the linear equations are gn = g22 = g33 > 0, 
gab = 0 for a < b. Then one can study the metrics that have primitive 
tetragonal symmetry, such as diag(g n, gn, g22), with gu # g=, and so 
on, with the other symmetries. 
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real matrices and a convex cone in the space C+(Q3) of 
the positive-definite elements of Q3- 

(iii) The fixed sets I(LI) ,  I(L2) of two finite subgroups 
L 1 and L 2 of GL(3, Z) have a nonempty  intersection if 
and only if L 1 and L 2 together  generate a finite 
subgroup of GL(3, Z), whose fixed set is I(L1) M I(L2). 

(iv) The fixed set I(L) of a lattice group L contains, as 
a submanifold of strictly smaller dimension,  the fixed 
set of any lattice group L' larger than L: 

I(L') C I(L) 4=> L C L'. (17) 

(v) For any lattice group L(C) and any m ~ GL(3, Z), 
the lattice group and its fixed set t ransform as follows 
[see also (11)]: 

L(mt gm) = m -i L(g)m 

and I(m-lL(g)m) = mtl(L(g))m. (18) 

Analogous  propert ies  hold for the fixed sets in the 
space/3.  

3. Multilattices and their 'geometric symmetry': 
space groups 

3.1. Deformable multilattices, their descriptors and their 
configuration spaces 

Throughout  this section and the following one, we 
will adopt  the usual Grassmann nota t ion for the points 
and translat ion vectors in the three-dimensional  real 
affine space A3; the group of all the affine transforma- 
tions of A 3 is denoted  by Aff3(3 ), and the subgroups of 
all the affine isometrics of A and of the translat ional  
isometrics are denoted  by E(3) and T(3), respectively 
[T(3) is of course isomorphic to/R3]. 

An ideal C rYastal is an infinite and discrete subset .A4 
of points in A which admits a simple lattice of trans- 
lations, say/~(ea), mapping .A4 to itself. This expresses 
the fact that .A,4 has three-dimensional  'periodicity ' ,  and 
implies (see Engel, 1986; Pitteri, 1990) that  M is the 
finite union of translates of a suitable affine simple 
la t t ice/~(P,  %), the latter being defined as 

/~(P, %) -- P + /Z(e  a) C A 3, with P E A 3. (19) 

Our  starting point is thus the following: 

Definition 1. A (monatomic)  multilattice .All in the affine 
space A 3 is a subset of A 3 such that 

v t) 

~V~ = U~C,(Pi , ea) = U { P i - h  I- • (ea) } ,  (20) 
i=O i=O 

where /2(%) denotes  a simple lattice in the translat ion 
space ]1~ 3 o f  a~x 3 as in (1). In (20), v is a suitable integer 
and the points Pi ~ M are all distinct and do not  differ 
by any vector in E(e,,). 

The name '(v + 1)-lattice' will be used when it is 
necessary to specify the number  of simple lattices 
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composing A//; in particular, l-lattices are affine simple 
lattices. 

Remark. For simplicity, in this paper, we will only 
consider multilattices that are monatomic as in the 
above definition, that is, whose points are all of the 
same atomic species. It is possible to extend the 
considerations presented here to the polyatomic case if 
all the constituent simple lattices carrying different 
atomic species have the same periodicity. 

A convenient set of descriptors for (v 4- 1)-lattices 
can be defined if we choose a 'base point' in A4, for 
instance P0, and introduce the v shift vectors or shifts 

Pi--PoPi for i = l  . . . . .  v; (21) 

the (v 4- 1)-lattice .M is then uniquely determined by P0 
and the v + 3 vectors e l, e~, e3, Pl . . . . .  Pv: 

M = M(Po,  e,,, Pl . . . . .  P~) = 0{Po + Pi + £(ea)}. 
i=0 

(22) 

The basis and shifts satisfy the conditions 

e 1 • e 2 x e 3 ~ 0, Pi ~ lae~ a n d  Pi :/: P / 4 -  l~ea, 
(23) 

for i , j  = 1 . . . . .  v, i ¢ j ,  and I a, l~ any integers; this 
guarantees that the simple lattices £.(Pi, ea) included in 
.A4 are three-dimensional and mutually disjoint. We will 
denote the above vectors by Eo, for a -- 1 . . . . .  v 4- 3: 

e~ = e~, a = 1, 2, 3 and E3+i = Pi, i = 1 . . . . .  v; 

(24) 

accordingly, we denote the multilattice A4 in (22) by 

M(Po, e.o). (25) 

The set of all (v 4- 3)-tuples of vectors of/i~ 3 satisfying 
the conditions in (23) ('multilattice descriptors') is 
denoted by 79'~+3, and is called the configuration space 
for deformable (v + 1)-lattices. 15 

The simple lattice £(ea)C/ i~  3 appearing in (20) is 
called the skeletal lattice of Ad(P 0, eo) in the given 
description, and its unit cell and basis are also called the 
cell and basis of .M in that description. £(e,,) can be 
interpreted as a group of translational isometries that 
map Ad onto itself. Notice that we can think of 
A4(P o, E,) as a triply periodic distribution of congruent 
clusters of 'atoms', of which a representative atom is 
placed at each point of the base lattice £(P0, ea). Such 
clusters create the microstructural motif  which contri- 
butes in an essential way to the characterization of the 
symmetry of .M. The shifts p; can be thought of as 

15 For simple lattices (l-lattices), v = 0 and, as mentioned at the end of 
§2.1, their configuration space is given by the space 7~3 = B of all 
bases of l~ 3. 

giving the position of the atoms of the motif of M with 
respect to the representive atom. An equivalent inter- 
pretation is that the Pi give the displacement from the 
base lattice £(P0, ea)  of the remaining simple lattices 
constituting At. For this reason, the shift vectors Pi are 
quite natural ' internal'  variables in the kinematics and 
energetics of deformable multilattices (see Ericksen, 
1970; James, 1987; Bhattacharya et al., 1993; Pitteri & 
Zanzotto, 1998a). 

Let •v+3 denote the space of all symmetric 
(v + 3) × (v 4-3) real matrices; it is useful to extend to 
multilattices the notion of lattice metric introduced in 
(2) and define the space Q~+3 C Qv+3 of the multilattice 
metrics K: 

K = (K~,~), K~o = Kor = ¢, • Er, 

a, r = 1 . . . . .  v 4- 3, (26) 

where the ~o satisfy conditions (23) and (24). An 
element K ~ Qv+3 is a (v + 3) x (v + 3) symmetric 
matrix which is only positive semi-definite because the 
vectors eo are not linearly independent; but not all the 
symmetric positive semi-definite matrices belong to 
Q~+3 because, by definition, the eo in (26) must also 
satisfy conditions (23) and (24). 

It is not difficult to see that, for any two sets of 
descriptors Eo and e~, as in (23)1 and (24), we have 

K' = K ¢~ e'~ = Qe~, for some Q ~ 0(3). (27) 

Owing to (27), also the space of metrics Qv+3 will be 
referred to as the configuration space of (v 4- 1)-lattices, 
as was the case for the space C ' - ( Q 3 )  of simple lattice 
metrics, to which Q'~+3 reduces for v -- 0. 

3.2. Essential descriptors of  multilattices 

A basic remark about the descriptive parameters 
(P0, e~) of a multilattice .M is that in (20) or (22) the 
number v is not determined by .At. This ambiguity 
arises because in general the skeletal lattice £(ea) in 
(20) may not describe the full translational invariance 
(periodicity) of .M, which is independent of the 
descriptors. Clearly, Definition 1 implies that there is a 
maximal lattice, that is, a maximal subgroup of trans- 
lations, 7¢ say,  16 mapping Ad onto itself. The lattice 7¢ is 
generated by suitable maximal bases for .M, and when 
the latter are used in (20) or (22) the description of Ad 
is called essential. In this case, the number v of shifts as 
well as the volume of the elementary cells of .Ad are 
minimal and no longer arbitrary, and the descriptors 
e a E ~)v+3 are themselves called essential for .M. 

It is not difficult to see that any description with the 
same number of shifts as an essential description is also 
essential. In a non-essential description of .A//, the basis 
only generates a sublattice of R, and the number of 

16From the French word 'rrseau' utilized for the maximal skeletal 
lattice of a multilattice. 
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shifts must be suitably increased to take all the lattice 
points of .A4 into account. As an example, one can 
consider the (essential) lattice vectors e,, in Fig. l(a), 
which generate a body-centered cubic l-lattice £. The 
same £ can be described by three primitive cubic lattice 
vectors, ea, say, together with the shift 

= 1 (el  --t- e2 ']- e3) (28) 

(see Fig. lb). The skeletal lattice /2(~a) in this case is 
obviously not maximal for /2 (its unit cell is twice the 
unit cell given by e,) and the descriptors (ea, P) are not 
essential. 

Non-essential descriptors must sometimes be used to 
model certain phase changes in crystals (for instance, 
they must be used in a model if it is to describe phase 
transitions from the body-centered cubic to the hexa- 
gonal close-packed lattice configurations, such as are 
observed in Li, Ti, Zn or Hf (see Nishiyama, 1978, 
pp. 68 and 344). However, there are various problems 
associated with non-essential descriptors, as we analyze 
in Pitteri & Zanzotto (1998a); see also Ericksen (1998). 
Thus: 

Remark. For simplicity, in this paper we will always 
suppose that the descriptors used for a multilattice are 
essential. Also, we will drop Po from the notation (25) 
whenever this does not create confusion. 

3.3. Symmetry operations of  multilanices 

As is well known, once an origin O is chosen in the 
affine space A 3, any isometry e ~ E(3) can be repre- 
sented by a pair 17 (t, Q), where t is the vector from O to 
e(O) and Q ~ 0(3). Given a multilattice .A4(to) in its 
essential description, for convenience we identify O 
with one of its points, say P0. 

An isometry e ~ E(3) mapping A4 onto itself: 
e(.A4) = .A/l, is called a symmetry operation of .A4. By 
definition, any symmetry operation e -  (t, Q) of M 
produces new essential descriptors (P0 and) ~, for .A4 
given by 

f i o = e ( P o ) = P o + t ,  and ~ = Q e o ,  (29) 

for which 

3.4. Space groups 

The space group of a monoatomic multilattice .A4, 
denoted by S(.A4), collects all the affine isometries 
mapping A4 onto itself: 

S(.A4) = {e ~ E(3) : e(.A4) = .A/l}. (31) 

In analogy to (4), if an affine symmetry e is applied to 
.M, its space group S(.A4) changes to a conjugate in 
e(3): 

S ( e . / ~ )  = e S ( , A / [ ) e  -1  . (32) 

Also, the following groups are considered in connection 
with .A4: the group 

T(A4) = S ( M ) ~  T(3) (33) 

and the group P(A4) collecting all the the orthogonal 
transformations Q preserving A4 when coupled with a 
suitable translation. 

Clearly, the groups S(A4), T(A4), P(.A4) only depend 
on the lattice .A4 and not on any choice of its descrip- 
tors. When essential descriptors e~ = (e a,pi) of 
.A4 = .A/I(eo) are considered, several properties of these 
groups can be easily seen. For instance, since T(A4) is 
the abelian normal subgroup of S(.A4) consisting of all 
the translations mapping .A4 onto itself, T(.A4) is 
isomorphic to the maximal skeletal lattice 7~(ea) of .A4. 

Also, owing to (47) below, one can check that the 
group P(A4) is in general a non-holohedral crystal- 
lographic point group contained in the holohedry P(ea) 
of ~(e,,): 

P(.A4(ea, pi)) _c p(ea). (34) 

The group P(.A/[) is indeed called the point group of .A/[ 
and determines an orthogonal conjugacy class called the 
crystal class of the multilattice .A/l; since P(.A/[) may be 
non-holohedral, the class of .A4 may be any one of the 
32 classes TM mentioned in Theorem 1. 

18Recall that simple lattices can only realise the seven holohedral 
crystal classes (crystal systems). Multilattices, on the other hand, do 
realise, in theory and in nature, all the 32 crystal classes that exist in 
three dimensions. 

M(p0, Eo) = M(P0, ~). (30) 

Some characteristic features of the symmetry opera- 
tions of multilattices are not encountered in simple 
lattices. For instance, it is well known that a multilattice 
can admit non-trivial screw rotations or glide reflections 
as symmetry operations, unlike simple lattices, which 
only admit trivial ones whose translational component 
is a lattice vector. Furthermore, unlike simple lattices, 
multilattices may lack central symmetry. 

17 We follow the notational convention proposed in the Appendix to 
Michel (1996). 
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(a) (b) 

Fig. 1. (a) The basis e a (essential descriptors) for the body-centered 
cubic simple lattice E. (b) Non-essential descriptors (6a, ~) for the 
same simple lattice E viewed as a 2-lattice. 
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The classification criterion adopted  for space groups 
is the natural  one given by conjugacy within the affine 
group Aft(3)  (see, for instance, Farkas, 1981; Miller, 
1972; Sternberg,  1994). By a known theorem of 
Bieberbach (1912) stating that any two isomorphic 
discrete subgroups of E(3) are affinely conjugate, this 
classification actually coincides with the classification of 
space groups based on group isomorphism. 

The following classical result, which is an analog for 
multilattices of Theorem 1, was obtained at the end of 
the last century: 

Theorem 4. There are 219 conjugacy classes of space 
groups within Aft(3).  The number  increases to 230 if 
conjugacy is considered only through orientat ion- 
preserving affine transformations.  

Numerous  descriptions of the space groups can be 
found in the literature: see for instance Burckhard t  
(1947), Janssen (1973), Sternberg (1994) or Interna- 
tional Tables for X-ray Crystallography (1952); see also 
Miller (1972) or Senechal (1990)• 

As with the geometric symmetry  of simple lattices in 
§2.1, based on the classification in crystal systems within 
B o r  C+(Q3), it is possible to introduce an analogous 
subdivision into crystal classes (and systems) also for 
the configuration spaces 79'~+3 or Q~+3 of (v + 1) lattices• 

4. T h e  ar i thmet ic  symmetry  o f  mult i latt ices  

In the previous section, we have briefly recalled the 
main facts regarding the geometric symmetry  of multi- 
lattices, which is based on their classification through 
the affine (or isomorphism) classes of the space groups• 
In this section, we discuss the notion of the arithmetic 
symmetry  of multilattices; this is not a classical subject 
of crystal lography and, as ment ioned in the Introduc- 
tion, so far it has only been partially investigated. 

We will follow rather  closely the structure of ~j2.2- 
2.4, where we briefly introduced the classical ari thmetic 
symmetry  of simple lattices• Thus we will seek to 
generalize to the case of multilattices the action of a 
'global symmetry  group'  on a suitable 'configuration 
space'  [in ~2.2-2 .4  these were given respectively by 
GL(3, Z) and B or C+(Q3) - see (7)2 and (8)]. 

Recall that in §3.1 we have already identified the 
natural  configuration spaces for the deformable  (v + 1)- 
lattices, that is, the spaces/3'~+3 o r  Qv+3. We now indi- 
cate a natural  counterpart ,  for (v + 1)-lattices, of the 
global symmetry  group GL(3, Z) of simple lattices• 

Let us first introduce the (sub)group 

l-'v+ 3 Q GL(v + 3, 7/,) (35) 

constituted by the unimodular  integral (v + 3) x (v + 3) 
matrices, which, by definition, have the following 
structure: for a, b = 1, 2, 3 and i, j = 1 . . . . .  v, 

# ~ F~+ 3 ¢~ ( / z ; ) =  

I b m a 

0 0 0 

0 0 0 

' (36) 

where (m b) is any matrix in GL(3, Z), 1~ are arbitrary 
integers and ct = ( ~ )  is a v x v matrix belonging to the 
finite non-commutat ive  group of matrices genera ted  by 
the permutation matrices w of the set {1 . . . . .  v} and by 
the matrices of the form 

1 0 . . .  0 0'~ 
/ 

0 1 . . .  0 0 

- 1  - 1  . . .  - 1  - 1  

0 0 . . .  1 0 
0 0 . . .  0 1 

(37) 

which are obtained from the identity by replacing one 
of its rows by a row of - I s .  The s e t  l-'v+ 3 introduced in 
(36)-(37) is indeed a subgroup of GL(v + 3, Z), as can 
be checked by means of a direct computation• Notice 
that the submatrix ct of a # ~ Fv+ 3 either is a permu- 
tation matrix or is a permutat ion matrix one of whose 
rows is substituted by a row of - l s .  2° 

As examples, we give the explicit forms of the 
elements of the groups F 4 (v  = 1: 2-lattices) and F 5 
(v -- 2: 3-lattices): ( ,1) 

. 12 
F4 = lZ = mh " m E GL(3, Z), 

l 3 

0 0 0 

l b ~ Z,t~ = -t-1 }, (38) 

4.1. Indeterminacy o f  the multilattice descriptors e o and 
global symmetry groups o f  multilattices 

To the end of finding the global symmetry  groups of 
multilattices, we give a result, see Proposit ion 3 below, 
analogous to Proposit ion 1 for simple lattices• 

19The v x v permutation matrix ct of a permutation ]'of {1 . . . . .  v} is 
defined as usual by ~vj ---- vf0. } for any numbers v I . . . . .  v~; so the 
entries of the matrix a are all 0s, except for ls in the f(i)th row of the 
ith column. 
20 For v = 0 (l-lattices or affine simple lattices), the definitions (36)- 
(37) give back the group I- '  3 = GL(3, Z) of Proposition 1. 
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and 

F5 = 1 #  = 

iI 
b :1 m a 

o o 

0 0 

: m E GL(3,  Z), 

/ 
l b ~ Z, (~ )  ~ A ] ,  (39) 

where A denotes the following group of matrices: 

{(10 0 1 ) ' ( -  : - I 0 ) , ( - - I  0 - : )  

1 0 0 1 1 
( - 1  - 1 ) ' ( - 1  - 1 ) ' ( 0 1  0 ) } "  (40, 

The structure of the matr ices /z  ~ l-'v+ 3 is justified by the 
following result, showing that the essential descriptors 
t:o of a multilattice t ransform by means  of a matrix in 
I-'v+ 3 and that the changes of essential descriptors are 
in a one-to-one correspondence with such matrices 
(compare with Proposition 1 for simple lattices). 

Proposition 3. Let .A//(t:o) be a monoatomic  (v + 1)- 
lattice in an essential description. 21 Then ~o are new 
essential descriptors for .A4 up to a translation [that is, 
A4(~o) -- .M(t:o) + 1] if and only if there exists a matrix 
# ~ Fv+ 3 such that 

~, = #~e~ for /z E l-'v+ 3. (41) 

The matrix # ~ F~+ 3 determines  uniquely the new 
descriptors ~o and vice versa. 22 

The proof of this result is given in Appendix  A1. We 
notice explicitly that, by (36) and (41), the new lattice 
vectors and shifts are given by 

6a t, 
= m~eb, Pi = ~P/q- li ~%, (42) 

where (m~) ~ GL(3,  Z), l~' ~ Z, and (~)  is a permuta-  
tion or a matrix (37) times a permutat ion,  with 
a = 1, 2, 3, i, j = 1 . . . . .  v. Note that the skeletal basis 
transforms to an equivalent  triple as in (7). 

As anticipated above, this result shows that the 
global symmetry of any monatomic  (v + 1)-lattice in its 
essential description is given abstractly by the arith- 
metic group 1-'v+3, and evidences the central role played 

21 See ~4.2.3 of Pitteri & Zanzotto (1998a) for more details regarding 
the case of non-essential descriptors. 
22 Of course, since the vectors e I . . . . .  ev+3 are not linearly indepen- 
dent, there are infinitely many (v + 3)x (v+ 3) matrices relating 
them to the vectors ko. This Proposition states that when the e~ and 
the ~,, are essential there always is one and only one such matrix in the 
group l"v+ 3. 

by the integral matrices # defined in (36)-(37) in the 
account of multilattice symmetry. 

A change of descriptors as in (41) induces, in obvious 
notation, the following transformation of the multi- 
lattice metric K in (26): 

- -  l z t K # ,  (43)  

where, in general, k # K. Formulas (41) and (43) give 
natural  actions of the group l"v+ 3 on the configuration 
spaces 77~+3 and Q'~+3, which generalize the actions (7)2 
and (8) obtained in the case of simple lattices: this is 
one of the central notions of this section. By (27), for 
any choice of t:o with multilattice metric K, the 
following holds: 

lztKlz = K ¢:~/z~t: r = Qt:o for some Q ~ O(3), (44) 

that is, two multilattices have the same metric if and 
only if their descriptions are orthogonally related. 

4.2. Lattice groups o f  multilattices 

As for simple lattices in §2.3, also the ari thmetic 
symmetry  of multilattices is based on the analysis of the 
finite subgroups of l-'v+ 3 that act isometrically on some 
multilattice or, equivalently, that stabilize some multi- 
lattice metric under  the action (43). Indeed, we will see 
in Corollary 1 that, as a particular case of the changes of 
essential descriptors considered in Proposition 3, the 
affine symmetry operations e -- (t, Q) belonging to the 
space group S(.A4) of a (v + 1)-lattice .A4 are in a one- 
to-one correspondence with the pairs (ng, # )  where ng is 
a triple of integers a n d / z  is a matrix in a suitable finite 
subgroup of l-'v+ 3. 

For the purposes of this Corollary, it is necessary to 
revert to the notation .A4(P 0, ¢,) for multilattices, in 
which also the base point P0 is explicitly indicated, as in 
(25). See Pitteri & Zanzotto (1998a) for more details, 
also for the case of non-essential  descriptors. 

Corollary 1. Let .Ad(P 0, t:o) be a monatomic  (v + 1)- 
lattice in an essential description and let K 6 Q'~+3 be 
the corresponding multilattice metric. Then an isometry 
e ---- (t, Q) ~ E(3) is a symmetry  operat ion for .A4, that 
is, e 6 S(.A,4) if and only if there exist a set of integers ng 
and a matrix # ~ F~+ 3 that are (mutually independent  
and) such that 

t = Poe(Po) = Pi(u) + n0eaa and Qt:o = /.tot:r,r (45) 

that is, /z preserves the metric K: 

# t K t z  = K. (46) 

The integers ng and the matrix tt 6 r'v+ 3 uniquely 
determine the affine symmetry  e 6 E(3) and vice versa. 
The index i(/z) in (45) is de termined by the submatrix ot 
of # in (36) as follows: if ct is a permutat ion matrix, 
i (#)  -- 0; if the rth row of 0t is a row of - I s ,  i (#)  -- r. 
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The proof of Corollary 1 is given in Appendix A2. 
Notice that, by (36) or (42), (45)3 can be written 
explicitly as 

Qe a _-- b ---- ~i'P] ~ (47) m,e b, Qpi + l i e,,. 

Formula (47) says that e -- (t, Q) • E(3) is a symmetry 
operation for the essential multilattice M ( e  a, Pi) only if 
the orthogonal tensor Q transforms the maximal 
skeletal lattice basis to an equivalent one according to 
(47)1 [that is, Q • P(ea)] and satisfies the further 
conditions (47)2. This proves the group--subgroup rela- 
tion (34) between the point group P(.Ad) of A4 and its 
maximal skeletal holohedry P(%). In what follows, for 
brevity we use the notation P(eo)--P(.A4(e~,)) for the 
point group of the multilattice described by e~. 

If .A/I(E~,) is a (v + 1)-lattice with metric K, based on 
Corollary 1 and by analogy with the definitions (10)- 
(13) for simple lattices, we define the lattice group A(eo) 
of A4: 

A(Ea)  C r v +  3 C GL(v + 3, Z), (48) 

as the subgroup of all the integral matrices # • Fv+ 3 

acting isometrically on .3,4, that is, for which there is 
Q • 0(3) such that (45)3 holds: 

A(e,,) = {# • F~+ 3 • #~E~ = QEo, Q • 0(3)}  

= {#  • 1-'v+ 3 • /ztK# = K}. (49) 

Analogously to the case of simple lattices, due to (46), 
A(e~) can be equivalently defined as the group of 
matrices /z preserving the multilattice metric K, as 
stated by (49)2 [compare with (10) and (13)]. The 
analogs for multilattices of the transformation rules (11) 
for lattice groups are 

A(/.LraEr) : ]£-1 A(gct) # and A(Reo) -- A(eo), (50) 

for any # • l-'v+ 3 and any R • 0(3). 
By Corollary 1, when the description is essential, 

each matrix # • A(e~) uniquely determines an element 
Q • P(Eo) and vice versa; the groups A(e~) and P(¢,) 
are indeed isomorphic and A(e~) is necessarily finite. 
However, A(e~) carries more information than P(eo): 
indeed, unlike with the point group P(E~), given the 
group of matrices A(e~) it is possible to reconstruct 
uniquely the (isomorphism class of the) space group 
S(M(e~))  - see Proposition 5 in §5. 

The natural (arithmetic) equivalence relation for the 
lattice groups and for the metrics of (v + 1)-lattices is 
conjugacy within I"v+3, as it was conjugacy in GL(3, Z) 
in the case of simple lattices. Moreover, similarly to the 
latter, a (v + 1)-lattice determines by (50)1 and (43) an 
entire F~+3-conjugacy class of lattice groups. Then one 
can study the conjugacy properties of the lattice groups 

and their arithmetic classes in 1-'v+ 3 in order to get 
information on the arithmetic symmetry of multilattices. 
For instance, in this context, it is natural to ask how 
many distinct conjugacy classes of lattice groups there 
are in l-'v+3, with the aim of obtaining a result similar to 
Theorem 2. This would classify the 'arithmetic 
symmetry types' of (v + 1)-lattices, giving an analog of 
the subdivision in Bravais symmetry types for simple 
lattices. 

4.3. Fixed sets in the configuration spaces of  multilattices 

The considerations in §2.4 on simple lattices, to a 
large extent, can be generalized in order to investigate 
the (changes of) symmetry of deformable (v + 1)- 
lattices. 

In analogy to (15), we define the fixed set 
I(A) C Q~+3 of any subgroup A of F~+3: 

I(A) = {K E Qvm+3 " # tK#  = K for all /z • A}. (51) 

We may also define the corresponding O(3)-invariant 
fixed sets in the configuration space D~+3; in this way, 
we get the analog to the definitions (15) and (16) for 
simple lattices. Similarly to ~2.3-2.4, one can then 
investigate the structure of the fixed sets in the 
configuration spaces Qv%3 o r  79'~+3 to see how symmetry 
changes along any 'phase transition' paths in these 
spaces. 23 

In the rest of this paper, we only report some very 
basic results giving partial counterparts for multilattices 
to some of the remarks in Proposition 2 (see also Pitteri 
& Zanzotto, 1998a,b). 

Proposition 4. 
(i) Any element # in the lattice group A(eo) of 

essential eo, has period 1, 2, 3, 4, or 6. 
(ii) A subgroup A C l-'v+ 3 is a subgroup of a lattice 

group if and only if I(A) contains a multilattice metric 
K • Q~+3, that is, a symmetric (v + 3) x (v + 3) matrix 
satisfying (23) and (26). 

(iii) A C l-'v+ 3 is a subgroup of a lattice group if and 
only if it is finite and it satisfies the additional condi- 
tions originating from (58) below. 

See Appendix A3 below for a proof of these state- 
ments. Notice that according to statement (iii), unlike 
for simple lattices, it is not enough that I(A) be non- 
empty to guarantee that A be (included in) the lattice 
group of a multilattice, but it must be I(A) O Q'~+3 # 0. 
It is also possible to obtain the analogs to statements 
(ii)-(iv) in Proposition 2. However, a complete analysis 

m of the structure of the fixed sets in 79~+3 or Qv+3 is not 
yet available [see the references above and Ericksen 
(1998) for some related results]. 

23 Remark that, given an element K 6 ~v+3 with a known lattice group 
A(K), the problem of finding all the K' E I(A(K)) that belong to the 
same fixed set as K is linear. 
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5. Inequivalence of the geometric and arithmetic 
symmetry of multilattices 

In this section, we give one main property of the fixed 
m sets in the configuration space Qv+3 of multilattices: we 

show that also for multilattices the arithmetic symmetry 
is more refined than the geometric (space-group) 
symmetry. This derives from the following proposition, 
which gives a counterpart, for multilattices, of some of 
the properties of the fixed sets of simple lattices stated 
in §2.4, and indicates the relation between the classical 
affine (or isomorphism) classes of space groups of 
Theorem 4 and the arithmetic classes of lattice groups 
in the group F~+ 3. 

Proposition 5. The space-group symmetry of multi- 
lattices is strictly coarser than their arithmetic sym- 
metry; that is: 

(i) Two (v + 1)-lattices in their essential description, 
whose lattice groups coincide, have isomorphic space 
groups. More, in general, if their lattice groups are 
conjugate in Fv+3, their space groups are isomorphic. 

(ii) For v > 0, the converse of (i) in general does not 
hold: 24 there are (v + 1)-lattices whose space groups are 
isomorphic but whose essential descriptors give lattice 
groups that are not conjugate in Fv+ 3. 

A proof is given in Appendix A4 below (see also Fig. 
2). Statements (i)-(ii) above show that multilattices 
with equivalent lattice groups always have isomorphic 
space groups but not vice versa. Thus, in principle, 
certain phase transitions with a change of symmetry in 
multilattices can only be detected through the analysis 
of the lattice groups and not by means of the space 
groups (even if complemented by the site-symmetry 
groups, as we remark below). Fig. 2 shows a theoretical 
example of this, which is analogous to the transitions 
changing the Bravais type but not the crystal system of 
a simple lattice, mentioned in footnotes 4 and 13. 

Remark. To describe in more detail the symmetry of 
multilattices, the notion of 'site symmetry'  is also used. 
The 'site-symmetry group' of a point of a multilattice is 
the subgroup of operations of the space group that 
stabilize that point [the site-symmetry groups of points 
belonging to the same space-group orbit are all conju- 
gate, see for instance Senechal (1990)]. By considering 
both the space group and the site-symmetry group(s), 
one describes the symmetry of multilattices in a finer 
way than by using only the space groups (see Interna- 
tional Tables for X-ray Crystallography, 1952). The 
example in Fig. 2 shows that the arithmetic symmetry 

24 Statement (i) in Proposition 5 can indeed be reversed if v = 0, that 
is, for simple lattices: two simple lattices £ and/~'  have arithmetically 
equivalent lattice groups, that is, have the same Bravais lattice type 
[see (14)], if and only if their space groups are isomorphic. This well 
known result (see for instance Janssen, 1973, p. 120) can be used to 
define the Bravais lattice types as the affine conjugacy classes of the 
space groups of l-lattices (see, for instance, Schwarzenberger, 1972). 

gives a classification of multilattices that is even finer 
than the one obtained by means of the space groups 
together with the site-symmetry groups (see at the end 
of Appendix A4). 

6. Conclusions 

In this paper, we have proposed a framework for the 
investigation of the kinematics and arithmetic 
symmetry of deformable multilattices, by generalizing 
the approach to this subject that is classical for simple 
lattices. For (v + 1)-lattices, we consider the action of a 
'global symmetry group' Fv+ 3 C GL(v + 3, Z) in (36), 
and of its finite lattice (sub)groups on the configuration 
spaces D~v+3 or Qv+3 defined by (23)-(26); by investi- 
gating the structure and arrangement of the fixed sets of 
such an action, one can describe in detail the symmetry 
changes in a multilattice that undergoes a deformation. 

The arithmetic symmetry of simple lattices distin- 
guishes different centerings in each crystal system and 
has great relevance in the phase transitions of real 
materials. In the same way, although geometrically not 
as transparent, the arithmetic symmetry of multilattices 
is expected to be relevant in the description of phase 
changes in complex crystals (see Fig. 2), and is well 
worth investigating further. Although our example is 
theoretical and not taken from nature, it is apparent 
that if two lattice structures as in Fig. 2 were to be 
observed in a crystalline material, it would be natural to 
call them two different 'phases' of that solid. These two 
arithmetically inequivalent multilattices have the same 
space group and the same site symmetry, yet exhibit 
markedly different geometries: their atomic configura- 
tions, for instance their nearest-neighbor relations, are 
clearly distinct. It would be impossible to describe such 
a 'phase transition' by means of the space group and 
site symmetries of the crystal because these do not 
change in the two phases. Only through their inequi- 
valent lattice groups is it possible to take their 
symmetry change into account (this is analogous, for 
multilattices, to the phase transformations in simple 
lattices mentioned in footnotes 4 and 13). Further study 

¢" , ' i ' ,  i : l  
,' : ' ,  I / I  " ' 

I ' i :'\1-f'; 
// q 1 

j . . . . . . .  

(a) (b) 

Fig. 2. Two 3-lattices whose space groups and site-symmetry groups 
are the same but whose lattice groups are not arithmetically 
equivalent [see Appendix A4, formulas (64)-(67) for an explicit 
description]. 
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of the ari thmetic symmetry  of multilattices, and a more 
detai led knowledge of the spaces ~v+3 and ~v%3 will 
thus improve our understanding of phase transitions in 
complex crystalline structures. 

It is worthwhile to remark that the systematic 
analysis, ment ioned at the end of ~4.2, of the ari thmetic 
symmetry  of ( v +  1)-lattices for any v is a difficult 
problem. The reason is that in order to have a complete  
knowledge it is necessary to investigate all the 
conjugacy classes of the lattice (sub)groups of 
l-'v+ 3 C GL(v + 3, Z), which is far from trivial [recall 
from Proposit ion 4 that the lattice groups are special 
finite subgroups of GL(v + 3, Z) - see also Appendix  
A3]. A special case of this was the systematic analysis of 
the ari thmetic symmetry of simple lattices, carried out 
at the beginning of this century, which required finding 
the conjugacy classes of all the finite subgroups of 
GL(3, Z) and resulted in Theorem 2 of §2.3. The 
ari thmetic symmetry  of multilattices is therefore a 
problem similar but not equivalent  to that of the 
ari thmetic symmetry  of higher-dimensional simple 
lattices, which is based on the investigation of the 
conjugacy properties of the finite subgroups of the 
groups GL(n, Z). The latter are known for low n (see 
Engel, 1986): this would help in the systematic study of 
the ari thmetic symmetry  of the simplest multilattices, 
such as the two- and three-dimensional  2- and 3-lattices. 
At  this stage, however,  it is likely that the analysis of 
interesting special cases encountered in crystallography, 
mechanics, physics, chemistry or materials  science, may 
prove more illuminating. See Ericksen (1998) and 
Pitteri & Zanzotto (1998a,b) for some related results. 

A P P E N D I X  A 
Some proofs 

A 1. Proof of Proposition 3 

For the 'only if' part: the maximal  skeletal lattice of 
.A4 is independent  of the essential descriptors used, that 
is, 7~(6~) : T~(ea); thus, Proposition 1 implies that (42)1 
necessarily holds for some e lement  m of GL(3, Z). To 
prove that fi = v, let us assume fi >_ v for definiteness. 
Since .A4( /50 ,~ )=  .A4(P0, e ~ ) + t ,  Pi is a point of 
.A4 + t for any i = 0 . . . . .  fi, see (20); hence, there exist 
a map f • {0 . . . . .  fi} ---> {0 . . . . .  v} and integers n a such 
that 

P, = Pt-(,) + naea + t. (52) 

We show that f is injective, hence (~ -- v and) f is a 
permutat ion of {0 . . . . .  v}: by contradiction, assume that 
f(i) = f(j) for some choice of i and j ~ i; then (42)1 and 
(52), together with the analog of (21) for ~ with the 
definition P0 = 0, imply 

Pi pj -- (n a n/)e~ -- (n a n~)(m-1 b- - - ° - ) a e ~ ,  ( 5 3 )  

which contradicts (23) for ~ and #,. 

We now write (52) - the r ight-hand side first for 
convenience - in the form 

P0 + t + p/(i) + naea = Po + Pi 

= P0 + t + Pf(0) + nge,, + Pi, (54) 

whence, for i = 1 . . . . .  v and a = 1, 2, 3, 

- I i e a ,  li ni no. pi=P1~;) P i~0)+a  a =  ~ -  ~ (55) 

If f(o)  = o, equat ion (55) has the form (42)2 in which o~ 
is the permutat ion matrix of the restriction of f to 
{1 . . . . .  v}; iff(O) ~ O, (55) coincides with (42)2, where c~ 
is the matrix of the form (37) in which the row of - l s  is 
the f(O)th, multiplied by the matrix of the permutat ion 
{1 . . . . .  f (0)  - 1, 0, f (0)  + 1 , . . . ,  v},--* {f(1) . . . . .  f(v)}. 

The relationship established above between the 
maximal  skeletal bases ~ and e a and relation (55) show 
that the two sets of essential descriptors ~o and eo are 
indeed related by a matrix /z e Fv+ 3 as in (41) - 
compare  with (36), (37). 

The permutat ion f "  {0 . . . . .  v} ---, {0 . . . . .  v} defined 
above is uniquely de termined by the matrix /z e F~+ 3 
through its submatrix c~; f is called the permutat ion 
associated with #. 

For the 'if ' part:_when (41) holds, so does (55)1 and 
the definitions of P0 through (52) for i -- 0, with arbi- 
trary ng and t, and of n~' through (55)2, imply (54), hence 
(52) also for i ¢ 0. Thus, 

-A~(Po . . . .  ev, ea) = 0 ~(bi,  ea) = 0 7"~(ef(i), ea) -t- t, 
i=0 i=0 

(56) 

whence the conclusion. 

A2. Proof of Corollary 1 

This corollary is a consequence of (44), (30) and 
Proposit ion 3, complemented  by formula (52) for i = 0 
and t = 0. 

Referr ing to (52), we notice that the index if/z) 
ment ioned  in this corollary coincides with the value 
f(0), f being the permutat ion associated with the matrix 
/z E l-'v+ 3, defined in §A1. 

A3. Proof of Proposition 4 

Statement  (i) derives from (36), (37), (45)3 and the 
crystallographic restrictions for Q e P(eo). 25 

Statement  (ii) is an easy consequence of the defini- 
tions of lattice group and of fixed set, and of (27). 

For s tatement  (iii), the finiteness of A is a conse- 
quence of (45)3, (49) and of the finiteness of the point 

25 If the ~o are not essential, the period of the elements/z E A(~ o) is a 
multiple of a crystallographic period 1, 2, 3, 4, 6. 



M A R I O  PITTERI  A N D  GIOVANNI  Z A N Z O T F O  371 

group P(E,). Moreover,  with the definitions 

IAI 
bi IAI-1 -1  a b a__ ~_,(mr )b(lr)i, 

r= l  
IAI (57) 

BTJb _--IAI-1 " - l a  E(ar) ' , (mr  )b -- , a~ ,  
r= l  

I AI being the number  of elements  in A, the technical 
condition ment ioned in statement (iii) is that the system 
of equations 

B ~  k b + b~' = 0 (58) 

in the unknown vectors (k], k~, k 3) . . . . .  (kl~, k 2, k3~) have 
at least one solution such that no vector and no 
difference of any two vectors be a triple of integers. 
This holds if I (A)  contains a matrix K satisfying (23) 
and (26), as requested by (ii), and is not otherwise a 
very suggestive condition. 

For the converse, we can use the finiteness of the 
group of submatrices m(/2) • GL(3,  Z) of /2 • A to 
select a lattice metric C such that m(/2)tCm(/2) -- C for 
any /2  • A: for any (7 • C+(Q3), the 'average'  

IAI 
C = IAI-1)--~ m(/2r)tCm(/2r ) (59) 

r= l  

has this property. Then, choose any basis % whose 
metric is C, any vectors (k~, k~, k 3) . . . . .  (kl~, k~, k3~) 
satisfying the conditions ment ioned below (58), and 
define Pi = k~/ea" Then the matrix of the scalar products 
of the descriptors (%, p,) is a multilattice metric in I(A),  
as required by (ii). 

A4. Proo f  o f  Proposition 5 

A proof of s tatement (i) can be given as follows. 
Given two essential (v + 1)-lattices with arithmeti- 

cally equivalent  lattice groups in l-'v+ 3, by (50) we can 
always choose their descriptors so that they have the 
same lattice group, say A. So, P0 being an arbitrary 
point 26 in A 3, suppose that two essential (v + 1)-lattices 
.A4 '=  .A4(P 0, d )  and .A4" : f l4 (P  0, t~) have the same 
lattice group A, and let S' = S(.A/['), S" = S(.A4") be the 
corresponding space groups. 

For an e lement  e ' =  (f ,  Q ' ) •  .A/[', write equations 
(47)2 and (45)1 in the equivalent  form (set p~) = 0): 

Q ' P I + I ' =  ' - - n  a ' Pf(i) -1- i ea, i = 0 . . . . .  V, a = 1, 2, 3; 

(60) 

then consider the map ~ '  : S' ~ Z 3(~+1) x A, where 
• ' : (t', Q')l--+({n~'},/2); here, {n~'} are the integers in 
(60) and /2  is the unique e lement  of A that corresponds 
to Q' through equation (45)2. Also, define the product • 

of pairs ({n~},/2) by the rule: 27 

( { ( n l ) a }  , /21)  * ({(n2)~},/22) 

= ({(nl))2(i) + (n2)~'(ml)~,},/21/22), (61) 

where fr is the permutat ion associated with #r, r = 1, 2 
(see §A1), and mr is the m-component  of/2r  [see (36)]. 
Then the standard composit ion rules for affine maps: 

a = (z, A), a = (÷,/~) =¢, ah = (r + A÷, AA)  and 

a -1 = ( - A - i T ,  A- l ) ,  (62) 

together with (60) and the uniqueness assertion in 
Corollary 1, imply (that the permutat ion associated with 
/21/22 is fl °f2 and) that 

~'(ele2) = ~ ' (e l )  • ~'(e2) 

and ~ ' (e l )  = (I)'(e2) ¢:~ e 1 = e 2 (63) 

for any el and e2 in S"; hence, ~ '  is a group 
isomorphism. In the same way, we can construct a 
group isomorphism ~ "  : S" --> Z 3(~+1) x A, so that 
dP'(eP') -1 " S' ~ S" is a group isomorphism too. 

For s tatement  (ii), we give an example. Take three 
mutual ly orthogonal vectors %, not of equal length, and 
consider the two sets ~ and to of 3-lattice descriptors 
(v = 2) given by: 

&~, = (el, e2, e3, Pl, P2), 

where 

Pl -- 1(el + e3), 

ql -- 21-(el + e 3 )  = P l ,  

t~ = (el, e2, e3, ql, q2), (64) 

P2 -- 1(el + e2 + e3), 
(65) 

q2 = 1(e2 + e3)- 

These two sets of descriptors give two distinct essential 
3-lattices whose primitive or thorhombic  skeletal 
cells contain two extra points (see Fig. 2). It is not 
difficult to see that the^ (symmorphic)  space groups 
of_ the multilattices .A4 : . /~(el ,  e2, e3, Pl, P2) and 
.A/[ = .A/[(el, e2, e3, ql, q2) coincide, and belong to the 
isomorphism class denoted by P m m m  in the standard 
notation of International Tables for  X-ray Crystal- 
lography (1952) or Janssen (1973). Indeed: 

S(.A4) = {(t, Q ) ' t  E/~(ea), 

Q • i l ,  +R~I, +R~2, +R~3 } = S(.AT~) (66) 

(here the symbol R$ denotes the rotation of rr about the 
ax i s  v). This means  that the common point group 
P(A4) = P(A4) = {+1, +R~I,-¢-R~2, :[:Rerr3} of the two 
multilattices coincides with the full or thorhombic 
holohedry mmm.  

Furthermore,  one can check that the lattice groups 
obtained from equations (64) and (45)2 are as follows: 

26 Choosing the same base point for the two multilattices does not 
change the conclusion because translating a multilattice changes its 
space group by conjugacy with the translation. 

27 The transformation of Z 3(v+1) defined by (61) is an example of a 
'Frobenius congruence' - see Senechal (1980) or Jari~ & Senechal 
(1984). 



372 T H E  A R I T H M E T I C  S Y M M E T R Y  OF D E F O R M A B L E  MULTILAT'FICES 

A(el e2 e3 P l , P : )  {1 /2-1, ""  ^ ^" , , , = , / ' L e  o , //'-1#%, a = 1, 2, 3}, 

A(el ,  e2, e3, ql, q2) = {1,/2_ l,/2.~, ].L_l/L~erra, a = 1, 2, 3}, 

(67) 

^ -- ^ ~  --71" where the mat r ices /x_  l, # -1 ,  #eo, and Pea all belong to 
F 5 in (39), and are given explicitly by: 

2 - - 1  

/ ~ - - 1  - - -  

- 1  0 0 - 1  - 1  

0 - 1  0 0 - 1  

0 0 - 1  - 1  - 1  
0 0 0 1 0 

0 0 0 0 1 

- 1  0 0 - 1  0 

0 - 1  0 0 - 1  

0 0 - 1  - 1  - 1  
0 0 0 1 0 

0 0 0 0 1 

1 0 0 t 0 0 
0 - 1  0 0 - 1  

^7~  

/z~ = 0 0 - 1  - 1  - 1  

0 0 0 0 1 

^ / r  

--7i" 

/ Z e 2  ~ -  

^Tr  z 
/ -Ze  3 

- 1  

0 

0 
0 

0 

- 1  

0 

0 
0 

0 

- 1  

0 

0 
0 

0 

- 1  

0 

0 
0 

0 

0 0 

1 0 
0 - 1  
0 

0 

0 

1 
0 - 1  
0 

0 

0 

- 1  

0 
0 

0 

0 

- 1  

0 

- 1  - 1  

0 0 

- 1  - 1  
0 1 0 

0 0 1 

0 - 1  0 

0 0 0 

- 1  - 1  
0 1 0 

0 0 1 

0 -1! --1 

0 - 1  

1 0 
0 0 

0 1 

0 --1! 0 

0 - 1  

1 0 
0 0 

0 1 

--71" 

-7 i"  
-- /zel ,  

, 

/ 
/ 
/ 

Notice that for each index a = 1, 2, 3 the couples of 
integral matrices (/2e~,/2,~) and (/2-1' /£-1) represent ,  
respectively, through equations (64) and (45)2, the same 
orthogonal  operat ions R '~ and --1, which belong to the eo 
point group of the multilattices. 

It can be verified that the two (finite) lattice groups 
A(el ,  e2, e3, Pl, P2) and A(e x, e 2, e 3, qx, q2) defined in 
(67) are not conjugate in F 5. This can be concluded by 
analyzing the matrices in F 5 that: (a) conjugate /2_  1 to 
/2_ l, and (b) conjugate the subset of generators  

^ "  
' #,2 } for A(~o) to any subset of matrices in A(~,).  It 

can be verified that no integral matrices in F 5 do the job 
because these conjugacy requirements  lead to a 
contradiction. 

It should be remarked  that the two multilattices .A4 
and M share not only their space group but also the 
si te-symmetry group of all their points; in both cases, 
the latter coincides with the entire point group. 
Consequently,  this example shows that the arithmetic 
classification is also finer than the one based on the 
space-group and site-group symmetries. 

We thank a referee for his interesting comments  and 
suggestions, which led to the R e m a r k  at the end of §5. 
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